10 Difference in diet by sex within H. curtus and H. schsistosus

source("./Functions/setup.R")

gc = read.csv("./Data/Sea_snakes_gut_content_2018-19.csv") %>%
    filter(Source == "Gut content")  # removing specimens collected from fisheries landings

The number of samples for conducting a sex wise analysis of feeding preference is limited for H. curtus.

10.1 Prey Preference

We modified and used the the Index of relative importance according to Pinkas et al. 1971 to determine the difference in prey preference between males and females in H. curtus and H. schistosus

# calulating index of relative importance (Pinkas et al. 1971)

IRI_sex <- gc%>%
  left_join(snakes, by = c("Field.Code"))%>%
  filter(Prey.Family != "", Sex != "", Snake.Species == "Hydrophis schistosus" | Snake.Species == "Hydrophis curtus")%>%
  group_by(Snake.Species, Sex)%>%
  mutate(Fr = length(unique(Field.Code)), # total number of snakes sampled
         W = sum(Weight..g..x, na.rm = T), # total weight of prey sampled
         N = n())%>% # total number of prey sampled
  group_by(Snake.Species, Sex, Prey.Family)%>%
  summarise(f = length(unique(Field.Code)), # number snakes in which prey family occured
            Fr = last(Fr),
            w = sum(Weight..g..x, na.rm = T), # weight of prey family
            W = last(W),
            n = n(), # number of individuals of prey family
            N = last(N))%>%
  group_by(Snake.Species, Sex, Prey.Family)%>%
  # caluclating percentages
  summarise(per.F = f*100/Fr,
            per.W = w*100/W,
            per.N = n*100/N,
            # caluclating IRI
            IRI = (per.N + per.W)*per.F)%>%
  arrange(Snake.Species, Sex, desc(IRI))%>%
  mutate(rank = 1:n())

# clean table

IRI_sex
Snake.Species Sex Prey.Family per.F per.W per.N IRI rank
Hydrophis curtus Female Unidentified 38.461539 19.5402299 38.461539 2230.837244 1
Hydrophis curtus Female Engraulidae 15.384615 16.6666667 15.384615 493.096647 2
Hydrophis curtus Female Serranidae 7.692308 28.7356322 7.692308 280.214922 3
Hydrophis curtus Female Carangidae 15.384615 1.7241379 15.384615 263.211590 4
Hydrophis curtus Female Clupeidae 7.692308 20.1149425 7.692308 213.901925 5
Hydrophis curtus Female Tetraodontidae 7.692308 13.2183908 7.692308 160.851527 6
Hydrophis curtus Female Leiognathidae 7.692308 0.0000000 7.692308 59.171598 7
Hydrophis curtus Male Unidentified 61.538461 10.8108108 53.333333 3947.331947 1
Hydrophis curtus Male Clupeidae 7.692308 49.5495495 13.333333 483.714484 2
Hydrophis curtus Male Cynoglossidae 15.384615 10.8108108 13.333333 371.448371 3
Hydrophis curtus Male Scombridae 7.692308 18.0180180 6.666667 189.882190 4
Hydrophis curtus Male Engraulidae 7.692308 6.3063063 6.666667 99.792100 5
Hydrophis curtus Male Nemipteridae 7.692308 4.5045045 6.666667 85.932086 6
Hydrophis schistosus Female Tetraodontidae 36.000000 33.6644592 34.615385 2458.074376 1
Hydrophis schistosus Female Plotosidae 12.000000 11.1754967 11.538462 272.567499 2
Hydrophis schistosus Female Unidentified 8.000000 12.5551876 11.538462 192.749193 3
Hydrophis schistosus Female Ariidae 8.000000 10.2097130 7.692308 143.216166 4
Hydrophis schistosus Female Serranidae 8.000000 9.6578366 7.692308 138.801155 5
Hydrophis schistosus Female Clupeidae 8.000000 8.8300221 7.692308 132.178638 6
Hydrophis schistosus Female Teraponidae 8.000000 3.5596026 7.692308 90.015283 7
Hydrophis schistosus Female Sillaginidae 4.000000 6.3465784 3.846154 40.770929 8
Hydrophis schistosus Female Scombridae 4.000000 3.1732892 3.846154 28.077772 9
Hydrophis schistosus Female Carangidae 4.000000 0.8278146 3.846154 18.695874 10
Hydrophis schistosus Male Tetraodontidae 32.608696 45.4308094 37.735849 2711.956254 1
Hydrophis schistosus Male Unidentified 30.434783 13.3681462 28.301887 1268.218396 2
Hydrophis schistosus Male Teraponidae 6.521739 10.3394256 5.660377 104.346541 3
Hydrophis schistosus Male Clupeidae 4.347826 13.6814621 5.660377 84.094954 4
Hydrophis schistosus Male Leiognathidae 6.521739 2.0887728 5.660377 50.537936 5
Hydrophis schistosus Male Ariidae 6.521739 1.4621410 5.660377 46.451207 6
Hydrophis schistosus Male Plotosidae 4.347826 5.3263708 3.773585 39.565025 7
Hydrophis schistosus Male Synodontidae 4.347826 2.3498695 3.773585 26.623715 8
Hydrophis schistosus Male Serranidae 2.173913 5.2219321 1.886793 15.453749 9
Hydrophis schistosus Male Pleuronectidae 2.173913 0.7310705 1.886793 5.691006 10
# plotting prey preference

IRI_sex %>%
    ggplot(aes(Prey.Family, IRI, fill = Sex)) + geom_col(col = "black", position = position_dodge(preserve = "single")) + scale_y_sqrt(name = "IRI (sq.rt.)") + labs(x = "Prey Family") + 
    scale_fill_brewer(palette = "Greys", name = "Snake Species") + theme(axis.text.x = element_text(hjust = 1, angle = 60), strip.text = element_text(face = "italic")) + 
    facet_wrap(~Snake.Species, ncol = 1)

10.2 Range of prey found in H. curtus and H. shistosus gut

We compared the dietary breadth between snakes species using the richness and diversity of prey families.

# Creating data matrix for prey community analysis analysis

fam_spade_sex = gc%>%
  left_join(snakes, by = c("Field.Code"))%>%
  filter(Prey.Family != "Unidentified", Prey.Family !="", Field.Code != "", Sex != "")%>% # removing unidentified specimens
  group_by(Snake.Species, Sex, Prey.Family)%>%
  summarise(n = n())%>% # total number of specimens per family in each snake species
  unite("Species_sex", Snake.Species:Sex)%>%
  spread(Species_sex, n, fill = 0)%>%
  column_to_rownames("Prey.Family")

10.2.1 Prey richness

gc%>%
  left_join(snakes, by = c("Field.Code"))%>%
  filter(Snake.Species == "Hydrophis schistosus" | Snake.Species == "Hydrophis curtus",
         Prey.Family != "Unidentified", Prey.Family != "", Sex != "")%>%
  group_by(Snake.Species, Sex)%>%
  summarise(Prey.Species = length(unique(Prey.Species)) - 1, # removing unidentified
            Prey.Families = length(unique(Prey.Family)))
Snake.Species Sex Prey.Species Prey.Families
Hydrophis curtus Female 6 6
Hydrophis curtus Male 4 5
Hydrophis schistosus Female 12 9
Hydrophis schistosus Male 10 9

10.2.2 Prey family diversity

# loading libraries

library(SpadeR)  ## for community indices

# calculating shanon diversity

# HC_f_div = as.data.frame(Diversity(fam_spade_sex[,1])$Shannon_diversity)%>% rownames_to_column('Estimator')%>% mutate(Species = 'Hydrophis curtus', Sex =
# 'Female')

# HC_m_div = as.data.frame(Diversity(fam_spade_sex[,2])$Shannon_diversity)%>% rownames_to_column('Estimator')%>% mutate(Species = 'Hydrophis curtus', Sex = 'Male')

HS_f_div = as.data.frame(Diversity(fam_spade_sex[, 3])$Shannon_diversity) %>%
    rownames_to_column("Estimator") %>%
    mutate(Species = "Hydrophis schistosus", Sex = "Female")

HS_m_div = as.data.frame(Diversity(fam_spade_sex[, 4])$Shannon_diversity) %>%
    rownames_to_column("Estimator") %>%
    mutate(Species = "Hydrophis schistosus", Sex = "Male")

HS_m_div %>%
    full_join(HS_f_div) %>%
    dplyr::select(Species, Sex, everything()) %>%
    arrange(Estimator)
Species Sex Estimator Estimate s.e. 95%Lower 95%Upper
Hydrophis schistosus Male Chao & Shen 6.128 1.136 3.902 8.354
Hydrophis schistosus Female Chao & Shen 8.991 1.665 5.728 12.254
Hydrophis schistosus Male Chao et al. (2013) 5.895 1.158 3.626 8.164
Hydrophis schistosus Female Chao et al. (2013) 8.334 1.842 4.724 11.943
Hydrophis schistosus Male Jackknife 5.964 1.179 3.654 8.274
Hydrophis schistosus Female Jackknife 8.616 1.688 5.307 11.926
Hydrophis schistosus Male MLE 5.160 0.987 3.225 7.096
Hydrophis schistosus Female MLE 6.628 1.114 4.444 8.812

While H. schistosus fed on greater number of prey families, H. curtus showed greater evenness in prey preference.

Statistical comparison is difficult as each individual snake fed on only one type of specimen at time.

10.3 Diet overlap between Males and Females

Number of overlapping prey families:

gc %>%
    left_join(snakes, by = "Field.Code") %>%
    filter(Snake.Species == "Hydrophis schistosus" | Snake.Species == "Hydrophis curtus", Prey.Family != "Unidentified", Prey.Family != "", Sex != "") %>%
    group_by(Snake.Species, Prey.Family) %>%
    summarise(N_pred = length(unique(Sex))) %>%
    group_by(Snake.Species) %>%
    summarise(Overlap = sum(N_pred > 1))
Snake.Species Overlap
Hydrophis curtus 2
Hydrophis schistosus 6

Morista - Horn overlap for Hydrophis schistosus:

prey_sim_HS <- SimilarityPair(X = fam_spade_sex[, 3:4], datatype = "abundance")

as.data.frame(prey_sim_HS$Empirical_relative)
Estimate s.e. 95%.LCL 95%.UCL
C12=U12(q=1,Horn) 0.8235676 0.0818281 0.6631845 0.9839507
C22(q=2,Morisita) 0.9154857 0.1043123 0.7110336 1.0000000
U22(q=2,Regional overlap) 0.9558784 0.0693936 0.8198670 1.0000000
ChaoJaccard 0.7477000 0.1043000 0.5432720 0.9521280
ChaoSorensen 0.8556000 0.0785000 0.7017400 1.0094600

There was high overlap in prey between males and females in H. schistosus.

Morista - Horn overlap for Hydrophis schistosus:

# prey_sim_HC <- SimilarityPair(X = fam_spade_sex[,1:2], datatype = 'abundance')

# prey_sim_HC$Empirical_relative

Very low sample size.

10.3.1 Testing segregation in prey between sexes

# loading libraries

library(vegan)

# formating data for vegan

fam_simboo_sex <- gc %>%
    left_join(snakes, by = "Field.Code") %>%
    filter(Prey.Family != "Unidentified", Prey.Family != "", Field.Code != "", Sex != "") %>%
    group_by(Snake.Species, Sex, Field.Code, Prey.Family) %>%
    summarise(n = n()) %>%
    spread(Prey.Family, n, fill = 0) %>%
    ungroup()

H. curtus:

# PERMANOVA to compare composition

set.seed(2)

permanova_hc <- adonis2(fam_simboo_sex[1:14, 4:length(fam_simboo_sex)] ~ fam_simboo_sex[1:14, ]$Sex, data = fam_simboo_sex[1:14, 2])
## clean table

broom::tidy(permanova_hc)
term df SumOfSqs R2 statistic p.value
fam_simboo_sex[1:14, ]$Sex 1 0.4960317 0.0815927 1.066098 0.421
Residual 12 5.5833333 0.9184073
Total 13 6.0793651 1.0000000

No difference in prey preference, however, sample sizes are low.

H. schistosus:

permanova_hs <- adonis2(fam_simboo_sex[15:69, 4:length(fam_simboo_sex)] ~ fam_simboo_sex[15:69, ]$Sex, data = fam_simboo_sex[15:69, 2])
## clean table

broom::tidy(permanova_hc)
term df SumOfSqs R2 statistic p.value
fam_simboo_sex[1:14, ]$Sex 1 0.4960317 0.0815927 1.066098 0.421
Residual 12 5.5833333 0.9184073
Total 13 6.0793651 1.0000000

No difference in prey preference across species.

10.4 Difference in size selectivity of prey between H. curtus and H. schistosus

# summary

gc%>%
  left_join(snakes, by = c("Field.Code"))%>%
  filter(Snake.Species == "Hydrophis schistosus" | Snake.Species == "Hydrophis curtus", Sex != "",
         Condition < 3)%>% # removing very digested specimens 
  group_by(Snake.Species, Sex)%>%
  skimr::skim(Maximum.Body.Girth..cm.)%>%
  skimr::yank("numeric")%>%
  dplyr::select(Snake.Species:p100)

Variable type: numeric

Snake.Species Sex n_missing complete_rate mean sd p0 p25 p50 p75 p100
Hydrophis curtus Female 0 1.00 3.06 1.04 2.00 2.10 3.2 3.50 4.50
Hydrophis curtus Male 1 0.83 2.38 0.42 2.00 2.00 2.4 2.50 3.01
Hydrophis schistosus Female 0 1.00 3.99 0.88 2.50 3.10 4.2 4.70 5.00
Hydrophis schistosus Male 0 1.00 3.30 1.21 1.06 2.62 3.6 4.15 5.50
# testing diff max prey width by species

gc%>%
  left_join(snakes, by = c("Field.Code"))%>%
  filter(Snake.Species == "Hydrophis schistosus" | Snake.Species == "Hydrophis curtus", Sex != "",
         Condition < 3, # removing very digested specimens  
         !is.na(Maximum.Body.Girth..cm.))%>% # removing unrecorded data
  dplyr::select(Snake.Species, Sex, Maximum.Body.Girth..cm.)%>%
  droplevels()%>%
  group_by(Snake.Species)%>%
  nest()%>%
  mutate(test = map(data, ~t.test(Maximum.Body.Girth..cm. ~ Sex, data = .)), # t test
         sumry = map(test, broom::tidy),
         d = map(data, ~lsr::cohensD(Maximum.Body.Girth..cm. ~ Sex, data = .)))%>% # effect size
  dplyr::select(sumry, d)%>%
  unnest()%>%
  dplyr::select(estimate1:parameter, d)%>%
  rename(`Females` = estimate1,
         `Males` = estimate2)
Snake.Species Females Males statistic p.value parameter d
Hydrophis schistosus 3.989231 3.304778 1.818943 0.0792649 28.989212 0.6290091
Hydrophis curtus 3.060000 2.382600 1.349915 0.2321573 5.267076 0.8537610

There were no significant differences in prey girth across sexes in both species. However, females did take slightly larger prey in both cases.